Constrained composite optimization and augmented Lagrangian methods
نویسندگان
چکیده
Abstract We investigate finite-dimensional constrained structured optimization problems, featuring composite objective functions and set-membership constraints. Offering an expressive yet simple language, this problem class provides a modeling framework for variety of applications. study stationarity regularity concepts, propose flexible augmented Lagrangian scheme. provide theoretical characterization the algorithm its asymptotic properties, deriving convergence results fully nonconvex problems. It is demonstrated how inner subproblems can be solved by off-the-shelf proximal methods, notwithstanding possibility to adopt any solvers, insofar as they return approximate stationary points. Finally, we describe our matrix-free implementation proposed test it numerically. Illustrative examples show versatility programs tool expose difficulties arising in vast class.
منابع مشابه
Adaptive Augmented Lagrangian Methods for Large-Scale Equality Constrained Optimization
We propose an augmented Lagrangian algorithm for solving large-scale equality constrained optimization problems. The novel feature of the algorithm is an adaptive update for the penalty parameter motivated by recently proposed techniques for exact penalty methods. This adaptive updating scheme greatly improves the overall performance of the algorithm without sacrificing the strengths of the cor...
متن کاملAugmented Lagrangian Methods and Proximal Point Methods for Convex Optimization
We present a review of the classical proximal point method for nding zeroes of maximal monotone operators, and its application to augmented Lagrangian methods, including a rather complete convergence analysis. Next we discuss the generalized proximal point methods, either with Bregman distances or -divergences, which in turn give raise to a family of generalized augmented Lagrangians, as smooth...
متن کاملSome Properties of the Augmented Lagrangian in Cone Constrained Optimization
A large class of optimization problems can be modeled as minimization of an objective function subject to constraints given in a form of set inclusions. We discuss in this paper augmented Lagrangian duality for such optimization problems. We formulate the augmented Lagrangian dual problems and study conditions ensuring existence of the corresponding augmented Lagrange multipliers. We also discu...
متن کاملThe proximal augmented Lagrangian method for nonsmooth composite optimization
We study a class of optimization problems in which the objective function is given by the sum of a differentiable but possibly nonconvex component and a nondifferentiable convex regularization term. We introduce an auxiliary variable to separate the objective function components and utilize the Moreau envelope of the regularization term to derive the proximal augmented Lagrangian – a continuous...
متن کاملSmoothing augmented Lagrangian method for nonsmooth constrained optimization problems
In this paper, we propose a smoothing augmented Lagrangian method for finding a stationary point of a nonsmooth and nonconvex optimization problem. We show that any accumulation point of the iteration sequence generated by the algorithm is a stationary point provided that the penalty parameters are bounded. Furthermore, we show that a weak version of the generalized Mangasarian Fromovitz constr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2023
ISSN: ['0025-5610', '1436-4646']
DOI: https://doi.org/10.1007/s10107-022-01922-4